Cyran, Jenée D.2023-09-212023-09-212022-08August 202August 202https://hdl.handle.net/2104/12377Persistent organic pollutants, particularly volatile organic compounds (VOCs) are common contaminants in the environment that undergo long range transport and are introduced into regions where they were not previously found. Glyoxal is well-studied and one of the most abundant oxygenated VOCs in the atmosphere, produced by the oxidation of aromatic hydrocarbons in the atmosphere and through isoprene and terpene reactions. Vibrational Sum-Frequency Generation (SFG) Spectroscopy and Attenuated Total Reflection (ATR) Fourier-Transform Infrared Spectroscopy have been utilized to obtain data of free OH and CH stretch vibrational bonds at the surface and in bulk for glyoxal and acetone in aqueous solution and on ice. Glyoxal can be studied using SFG to gain an understanding of the molecular structure and orientation on the surface of ice and water. Investigating molecular level details of glyoxal on aqueous interfaces can provide information for climate models and the impact of organic pollutants on the environment.application/pdfenUnderstanding interactions of glyoxal and acetone at aqueous and ice interfaces using vibrational sum-frequency generation spectroscopy.ThesisWorldwide access2023-09-21