Harris, Brandon Joseph.Matthews, Lorin Swint.Hyde, Truell Wayne.2015-06-252015-06-252015-06-22Physical Review E, 91(6), 063105, 201http://hdl.handle.net/2104/9427A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented.Voids created in three-dimensional crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified Gaseous Electronics Conference rf cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a dc plasma is modified and applied to explain experimental data in rf plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation upon increasing the probe potential above the plasma floating potential is justified by a combination of ion drag and sheath edge modification. The cavities produced by these methods appear similar, but each is shown to be facilitated by fundamentally different processes.enDusty plasma cavities: Probe-induced and naturalArticle10.1103/PhysRevE.91.063105