Modeling the influence of ion wakes on the self-organization of dust in a complex plasma.

Abstract

The interaction between charged dust grains and streaming plasma leads to the formation of ion wakes, which are thought to be responsible for the self-organization of dust into complex structures. These structures have been observed to exhibit long-range stability both in ground-based and microgravity experiments. The response of dust in complex plasma to changes in experimental conditions is similar to the atomic-level ordering in traditional materials, but occurs at more easily observable spatial and temporal scales due to the larger dust grain size. The purpose of this work is to expand the current understanding of stable configurations of dust grains in a streaming plasma environment by implementing a molecular dynamics simulation that models dust and ions on their individual timescales. The model is used to determine plasma parameters that are currently unable to be directly measured experimentally and quantify their impact on dust structures, to compare and evaluate existing theoretical models of electric potential and resulting interactions between charged dust grains, and to quantify plasma conditions that lead to transitions between stable configurations of dust.

Description

Keywords

Citation