Delocalization in infinite disordered two-dimensional lattices of different geometry

Date
Authors
Kostadinova, Eva
Busse, Kyle
Ellis, Naoki
Padgett, Josh
Liaw, Constanze
Matthews, Lorin S.
Hyde, Truell W.
Access rights
Journal Title
Journal ISSN
Volume Title
Publisher
Physical Review B
Abstract

The spectral approach to infinite disordered crystals is applied to anAnderson-type Hamiltonian to demonstrate the existence of extended states for nonzero disorder in 2D lattices of different geometries. The numerical simulations shown prove that extended states exist for disordered honeycomb, triangular, and square crystals. This observation stands in contrast to the predictions of scaling theory, and aligns with experiments in photonic lattices and electron systems. The method used is the only theoretical approach aimed at showing delocalization. A comparison of the results for the three geometries indicates that the triangular and honeycomb lattices experience transition in the transport behavior for similar levels of disorder, which is to be expected from the planar duality of the lattices. This provides justification for the use of artificially prepared triangular lattices as analogues for honeycomb materials, such as graphene. The analysis also shows that the transition in the honeycomb case happens more abruptly compared to the other two geometries, which can be attributed to the number of nearest neighbors.We outline the advantages of the spectral approach as a viable alternative to scaling theory and discuss its applicability to transport problems in both quantum and classical 2D systems.

Description
Keywords
Citation
Physical Review B, 96, 235408, 15 December 2017
Collections