Advancing an understanding of ecological risk assessment approaches for ionizable contaminants in aquatic systems.

dc.contributor.advisorBrooks, Bryan W.
dc.contributor.authorValenti, Theodore Walter.
dc.contributor.departmentEcological, Earth, and Environmental Sciences.en
dc.contributor.otherBaylor University. Institute of Ecological, Earth and Environmental Sciences.en
dc.date.accessioned2010-10-08T16:30:58Z
dc.date.available2010-10-08T16:30:58Z
dc.date.copyright2010
dc.date.issued2010
dc.description.abstractFreshwater is increasingly becoming a finite resource in many regions of the world. Gaps between estimated water supply and demand continue to narrow and the prospects of acquiring additional sources of freshwater remain limited. Furthermore, economically efficient water resource management practices are perplexed by increasing urbanization and changing land-use in semi-arid regions. Although repeated use of water is a practical and effective means for easing strain on water supplies, there is concern that unnecessary contamination may diminish future value of this important resource. Some surface waters in semi-arid regions of the U.S. are effluent-dominated as flow is comprised of >90% treated wastewater. Ionizable compounds are chemicals often associated with urban development and examples include pharmaceuticals, agrochemicals, natural toxins, and other common contaminants (e.g. ammonia). Because continued population growth and urbanization are likely to increase contaminant release and alter dilution capacity of receiving systems, it is important that best management approaches are developed at the watershed scale to limit water quality degradation associated with ionizable compounds. Current methods for prospective and retrospective ecological risk assessments of ionizable compounds seldom consider site-specific conditions during the analysis of effects of phase. Ionization state is largely controlled by the acid/base dissociation constant (pKa) and pH of the solution where a compound resides. Stream water quality can therefore influence ionization state, which is important because the unionized forms a more lipophilic and have a greater propensity to cross cellular membranes. Consequently, the unionized forms are hypothetically more toxic. I completed toxicity tests in the laboratory using various contaminants as model ionizable compounds over a gradient of environmentally-relevant surface water pH and then related measured toxicological endpoints to observed pH of surface waters using both discrete and probabilistic ecological risk assessment approaches. The result of my studies clearly demonstrated that site-specific pH may influence the toxicity of ionizable contaminants. Potential modifications to conceptual frameworks of ecological risk assessment for ionizable contaminants are suggested so that uncertainty can be reduced.en
dc.description.degreePh.D.en
dc.description.statementofresponsibilityby Theodore W. Valenti, Jr.en
dc.format.extent440484 bytes
dc.format.extent443091 bytes
dc.format.extent443088 bytes
dc.format.extent71823 bytes
dc.format.extent2188710 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.identifier.citationValenti TW, James SV, Lahousse M, Schug KA, Roelke DL, Grover JP, Brooks BW. "A mechanistic explanation for pH-dependent ambient aquatic toxicity of Prymnesium parvum Carter." Toxicon 55, 5 (2010): 990-998.en
dc.identifier.citationValenti TW, James SV, Lahousse M, Schug KA, Roelke DL, Grover JP, Brooks BW. "Influences of pH on amine toxicology and implications for harmful algal bloom ecology." Toxicon 55, 5 (2010): 1038-1043.en
dc.identifier.citationValenti TW, Perez –Hurtado P, Chambliss CK, Brooks BW. "Acute and sublethal toxicity of sertraline to Pimephales promelas over a surface water pH gradient: Implications of ionization state for risk assessment." Environ Tox Chem 28 (2009): 2685-2694.en
dc.identifier.urihttp://hdl.handle.net/2104/8063
dc.language.isoen_USen
dc.rightsBaylor University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. Contact librarywebmaster@baylor.edu for inquiries about permission.en
dc.rights.accessrightsWorldwide access.en
dc.rights.accessrightsAccess changed 9/4/2013.
dc.subjectEnvironmental risk assessment.en
dc.subjectAquatic ecotoxicology.en
dc.subjectIonizable contaminants.en
dc.subjectSite-specific pH.en
dc.subjectEmerging contaminants.en
dc.titleAdvancing an understanding of ecological risk assessment approaches for ionizable contaminants in aquatic systems.en
dc.typeThesisen

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
theodore_valenti_phd.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format
Description:
Dissertation
No Thumbnail Available
Name:
theodore_valenti_permissions.pdf
Size:
70.14 KB
Format:
Adobe Portable Document Format
Description:
Permissions Form
Loading...
Thumbnail Image
Name:
ted_valenti_copyright_toxiconA.pdf
Size:
432.7 KB
Format:
Adobe Portable Document Format
Description:
Copyright A
Loading...
Thumbnail Image
Name:
ted_valenti_copyright_toxiconB.pdf
Size:
432.71 KB
Format:
Adobe Portable Document Format
Description:
Copyright B
Loading...
Thumbnail Image
Name:
ted_valenti_copyright_ETC.pdf
Size:
430.16 KB
Format:
Adobe Portable Document Format
Description:
Copyright C

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.96 KB
Format:
Item-specific license agreed upon to submission
Description: