Matrix Representations of GF(p[superscript n]) over GF(p)

dc.contributor.authorMaurer, Peter M.
dc.date.accessioned2014-01-31T17:45:09Z
dc.date.available2014-01-31T17:45:09Z
dc.date.issued2014-01-31
dc.description.abstractWe show that any non-singular nxn matrix of order p[superscript n]-1 over GF(p) is a generator of a matrix representation of GF(p[superscript n]). We also determine the number of matrix representations of GF(p[superscript n])GF(p) over GF(p), and then number of order p[superscript n]-1 matrices in the general linear group of degree n over GF(p). The theorems are easily generalizable to arbitrary field extensions.en_US
dc.identifier.urihttp://hdl.handle.net/2104/8928
dc.licenseGPLen_US
dc.subjectGroup representationsen_US
dc.subjectmatrices over finite fieldsen_US
dc.titleMatrix Representations of GF(p[superscript n]) over GF(p)en_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Theorem I wish to prove.pdf
Size:
91.14 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Item-specific license agreed upon to submission
Description: