Stability and control on stochastic time scales.

dc.contributor.advisorDavis, John M. (John Marcus), 1974-
dc.creatorPoulsen, Dylan Richard, 1987-
dc.date.accessioned2015-05-26T20:39:06Z
dc.date.available2015-05-26T20:39:06Z
dc.date.created2015-05
dc.date.issued2015-04-02
dc.date.submittedMay 2015
dc.date.updated2015-05-26T20:39:06Z
dc.description.abstractWe develop the stability theory for two classes of dynamic equations evolving on a time domain that is non-uniform and stochastic. In particular, we examine the mean-square exponential stability and almost sure exponential stability of linear, time invariant systems and of linear, time-varying systems, where the variation in time is only due to the local time step. With the stability theory in hand, we apply our results to control systems evolving on stochastic, non-uniform time domains. We design stabilizing closed-loop feedback controllers, observers, observer-based closed-loop feedback controllers, and optimal closed-loop feedback controllers.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2104/9343
dc.language.isoen
dc.rights.accessrightsWorldwide access.
dc.subjectTime scales. Stability. Control. Lyapunov methods. Riccati equations.
dc.titleStability and control on stochastic time scales.
dc.typeThesis
dc.type.materialtext
thesis.degree.departmentBaylor University. Dept. of Mathematics.
thesis.degree.grantorBaylor University
thesis.degree.levelDoctoral
thesis.degree.namePh.D.

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
POULSEN-DISSERTATION-2015.pdf
Size:
989.01 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Dylan_Poulsen_copyrightandavailabilityform.pdf
Size:
80.12 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.95 KB
Format:
Plain Text
Description: