Super Symmetry

dc.contributor.authorMaurer, Peter M.
dc.date.accessioned2013-09-20T07:42:30Z
dc.date.available2013-09-20T07:42:30Z
dc.date.issued2013-09-20
dc.description.abstractSuper symmetry is a type of matrix-based symmetry that extends the concept of total symmetry. Super symmetric functions are “even more symmetric” than totally symmetric functions. Even if a function is not super symmetric, the super symmetric transpose matrices can be used to detect partial super symmetries. These partial symmetries can be mixed arbitrarily with ordinary symmetric variable pairs to create large sets of mutually symmetric variables. In addition, one can detect subsets of super symmetric inputs, which are distinct from partial super symmetries. Super symmetry allows many new types of Boolean function symmetry to be detected and exploited.en_US
dc.identifier.urihttp://hdl.handle.net/2104/8788
dc.licenseGPLen_US
dc.subjectSuper Symmetryen_US
dc.subjectSymmetric Boolean Functionsen_US
dc.subjectSymmetry Detectionen_US
dc.titleSuper Symmetryen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Super Symmetry.pdf
Size:
126.95 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Item-specific license agreed upon to submission
Description: