On a ring associated to F[x].

dc.contributor.advisorDugas, Manfred.
dc.contributor.authorAceves, Kelly Fouts.
dc.contributor.departmentMathematics.en_US
dc.contributor.schoolsBaylor University. Dept. of Mathematics.en_US
dc.date.accessioned2013-09-24T14:01:41Z
dc.date.available2013-09-24T14:01:41Z
dc.date.copyright2013-08
dc.date.issued2013-09-24
dc.description.abstractFor a field F and the polynomial ring F [x] in a single indeterminate, we define Ḟ [x] = {α ∈ End_F(F [x]) : α(ƒ) ∈ ƒF [x] for all ƒ ∈ F [x]}. Then Ḟ [x] is naturally isomorphic to F [x] if and only if F is infinite. If F is finite, then Ḟ [x] has cardinality continuum. We study the ring Ḟ[x] for finite fields F. For the case that F is finite, we discuss many properties and the structure of Ḟ [x].en_US
dc.description.degreePh.D.en_US
dc.identifier.urihttp://hdl.handle.net/2104/8807
dc.language.isoen_USen_US
dc.publisheren
dc.rightsBaylor University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. Contact librarywebmaster@baylor.edu for inquiries about permission.en_US
dc.rights.accessrightsWorldwide accessen_US
dc.subjectFinite field.en_US
dc.subjectPolynomial ring.en_US
dc.subjectEndomorphism ring.en_US
dc.subjectProperties of a ring.en_US
dc.subjectChinese remainder theorem.en_US
dc.titleOn a ring associated to F[x].en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Kelly_Fouts_phd.pdf
Size:
292.47 KB
Format:
Adobe Portable Document Format
Description:
Dissertation
No Thumbnail Available
Name:
Kelly_Fouts_Copyright-AvailabilityForm.pdf
Size:
280.39 KB
Format:
Adobe Portable Document Format
Description:
Copyright and Availability Form

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Item-specific license agreed upon to submission
Description: